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Coherent Jammers Suppression

Chung-Yao CHANG†, Student Member and Shiunn-Jang CHERN†a), Associate Member

SUMMARY In this paper, a new narrowband beamformer
with derivative constraint is developed for wideband and coher-
ent jammers suppression. The so-called IQML algorithm with
linear constraint, which is used to estimate the unknown direc-
tions of the jammers in signal-free environment, is shown to be an
inappropriate constraint estimator. In this paper, a new IQML
algorithm with a norm constraint is considered, which is a consis-
tent estimator and can be used to achieve desired performance.
It can be also employed in the CDMA system for MAI suppres-
sion. We show that it outperforms the approach with the linear
constraint used in the narrowband beamformer, in terms of direc-
tional pattern, output SINR and nulling capability for wideband
and coherent jammers suppression.
key words: coherent jammer, jammer subspace, derivative
constraint, inconsistent estimator, iterative quadratic maximum
likelihood

1. Introduction

In wireless mobile communication system, the role of
antenna array signal processing techniques has become
more significant, and can be used to suppress the co-
channel interference or jammers, and thus enhancing
the system performance [1]–[3]. In array signal process-
ing, basically, they are two adaptive array structures,
viz., narrowband array and wideband array structures.
Although, the wideband arrays with a finite impulse re-
sponse (FIR) filter associated with each sensor can be
used to provide additional degrees of freedom for wide-
band jammer suppression. However, the computational
load is too expensive [1]. Thus, the possibility of using
the narrowband array to deal with wideband jammer
suppression becomes more attractive. It is known that
the problem of rejecting wideband jammers via narrow-
band array structure is rendered particularly difficult
when the signal of interest is also wideband in nature.
Besides, it could not be used to suppress the coher-
ent jammers efficiently and might cancel the main-lobe
signal to cause significant signal cancellation. To deal
with the problem, an alternative approach, incorporat-
ing with the derivative constraints, could be employed
in narrowband beamformer to form the flat nulls and
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provide the robustness of beamformer to wideband as
well as coherent jammers [4], [5].

In [4], to provide additional robustness of a nar-
rowband array to wideband and moving interfering, the
modification of the Hung-Turner (HT) algorithm with
derivative constraint suggested, it does not require any
a priori information about jammer direction. Also, in
[5], an alternative derivative constraint approach was
proposed. Where, the constraints were incorporated
with a maximum likelihood (ML) characterization of
the so-called jammer subspace.To implement the esti-
mation of the orthogonal complement of jammer sub-
space, the iterative quadratic ML (IQML) discussed in
[9] was employed to estimate the model parameters,
e.g., b0,b1,...,bP , with the constraint, e.g., b0 = 1.

In this paper, a new IQML beamforming algo-
rithm is devised to achieve desired performance. This
approach is different from [5], here the basic idea of
conjugate symmetry constraint, addressed in [10], with
quadratic (norm) constraint set, is extended to the nar-
rowband array. We note that, as indicated in [9], [10],
the IQML algorithm has been utilized well in the prob-
lem of frequency estimation. In fact, it can be seen in
the computer simulation, different constraint sets will
establish quite different characteristics of estimation
and might affect the nulling capability of the beam-
former, dramatically. Since the approach with linear
constraint set suggested in [5], [9] is known to be an in-
appropriate estimator, is biased and inconsistent, espe-
cially in noisy scenarios. On the other hand, the IQML
algorithm with quadratic (norm) constraint is known to
be a consistent estimator and can largely mitigate some
of the deficiencies. Thus, we may expect the deriva-
tive constraint narrowband array beamforming using
the IQML algorithm with quadratic (norm) constraint
can perform better than the one using the IQML algo-
rithm with linear constraint.

In this paper, this new narrowband beamforming
algorithm with derivative constraints is applied to the
code division multiple access (CDMA) system to im-
prove the performance of desired user’s detection pro-
cess [6]–[8]. In fact, the multiple access interference
(MAI), due to other users, can be viewed as the wide-
band jammer before the correlator in the multi-user re-
ceiver. Moreover, we know that, in general, the spread-
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ing code corresponding to each individual user could
impossibly be orthogonal because of the timing asyn-
chronous in the uplink channel and multipath Rayleigh
fading effect, in such circumstance the MAI may oc-
cur. In these cases, the MAI can also be viewed as the
coherent jammer with major correlation in the same
frequency band. Even thought the jammers effect dis-
cussed above will be mitigated while the signals passing
through the correlator in terms of the spreading code of
desired user, the pre-rejection in the front end of the re-
ceiver, especially in the antenna array, will provide sig-
nificant performance improvement in the desired user’s
detection process.

In this paper, we will first address the deriva-
tive constraint IQML beamforming algorithm with
quadratic constraint for suppressing the wideband and
coherent jammers, in Sect. 2. To do so, the problem
formulation via uniform linear array (ULA) and the
optimal solution of the beamformer by jammer sub-
space characterization are first reviewed. In Sect. 3,
the properties of maximum likelihood criterion with dif-
ferent constraint sets are demonstrated. To verify the
merit of the proposed algorithm, simulation results in
terms of directional pattern, output SINR value and
output power, for several scenarios are given to show
the capability of narrowband beamformer for jammers
suppression.

2. Problem Formulation and Solution of the
Beamformer

Consider a uniform linear array of M sensors. Let a
desired signal impinge on the array from a known di-
rection θ0 along with P − 1 jammer signals from un-
known directions {θ1, θ2, ..., θP−1}, respectively. The
M×1 received vector at the sensors is

y(t) = a(θ0)s0(t) + Ãs̃(t) + n(t) (1)

where s0(t) is the signal waveform of the desired sig-
nal and s̃(t)=[s1(t), s2(t), ..., sP−1(t)]T is the (P −1)×1
jammer vector. Also, Ã(t)=[a(θ1),a(θ2), ...,a(θP−1)]
is a M×(P − 1) array matrix of jammer direction,
a(θ)=[1, exp(jπθ), ..., exp(j(M − 1)πθ)]T is the steering
vector with τθ=ω0�sinθ/c. Parameters � and c are de-
noted as the sensor space and velocity of propagation.
Moreover, we assume that the equal spacing between
array elements is set to be λ/2, where λ is wavelength,
then the τθ can be simplified by π(M−1)sinθ. And n(t)
denotes the additive Gaussian noise with each sensor.
The output of the beamformer associated with a weight
vector w can be written as

wHy(t) = wHa(θ0)s0(t) +wH
(
Ãs̃(t) + n(t)

)
(2)

or more succinctly as

wHy(t) = wHa(θ0)s0(t) + e(t) (3)

where e(t) denotes the undesired contribution to the
output due to jammers and noise of (2). In order to
provide the robustness of the flat nulls to reject the
wideband jammers, the derivative constraint is incor-
porated to minimize the mean squared error

ξ(t) = E[eH(t)e(t)] (4a)

and subjects to the constraints

wHa(θ0) = 1 (4b)

wHa(θp) = 1, p = 1, 2, ..., P − 1 (4c)

and

dmwHa(θ)
dτm

∣∣∣∣
θ=θp

=0,m=1, 2, ..., q; p=1, 2, ..., P−1

(4d)

Combining (3) with (4c) and (4d), these two constraint
sets can be written more compactly as

wHCma(θp)=0, m=1, 2, ..., q; p=1, 2, ..., P−1 (5)

Where C=diag{0, 1, ...,M − 1} is an M×M diagonal
matrix of space coordinates of the sensors. In [5], us-
ing the jammer subspace characterization approach, the
optimal weights vector of the beamformer without the
knowledge of the jammers’ directions is obtained

w =
U(t)a(θ0)

aH(θ0)U(t)a(θ0)
(6)

where U=I−Q(QHQ)−1QH is a projection matrix, I
is an identity matrix, Q is denoted by Q=[I−PB̃, I−
PC−1B̃, ..., I − PC−qB̃ ] with PB̃=B̃(B̃HB̃)−1B̃H=I −
PÃ and PÃ=Ã(ÃHÃ)−1ÃH . It is noted that B̃ as
defined in [5], is a M×(M − P + 1) matrix, which is
obtained by increasing the information corresponding
to the known look direction of the desired signal from
B. Moreover, B is the M×(M − P ) Toeplitz matrix

B =




b∗p · · 0
b∗p−1 b∗p · 0
· · · b∗p
b∗0 b∗1 · ·
0 b∗0 · ·
0 · · b∗0




(7)

where b0, b1, . . . , bP , are the model parameters related
to the array matrix A=[a(θ0), Ã]. In fact, as indicated
in [9], for the array matrix A, it exists a unique gener-
ating polynomial b(z) of the form

b(z) = b0z
P + b1zP−1 + ...+ bP (8)

where the roots are {exp(−jτθi), 0 ≤ i ≤ P − 1}, and
the coefficient vector defined by b=[b0, b1, ..., bP ]H
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3. The New IQML Beamforming Algorithm

As described earlier, the matrixU in terms of model pa-
rameters, e.g., b0, b1, . . . , bP , should be estimated from
one or more observed data snapshots via ML estima-
tion criterion called IQML algorithm. As suggested in
[10] that the IQML algorithm with quadratic constraint
provides better performance than linear constraint in
frequency estimation problem. Due to the fact, the
quadratic (norm) constraint is a consistent estimator.

It has been shown that under white Gaussian noise
(WGN), the ML estimators and least square estimators
are equivalent. Hence, the ML estimate of the signal
parameters can be obtained by solving the nonlinear
least squares problem

min
A,s(t)

∑
t

‖y(t) −As(t)‖2 (9)

where ‖ · ‖ is the Euclidean norm. Significant compu-
tational savings follow from the observation is a linear
least squares problem whose solution is given by

ŝ(t) = A†y(t) (10)

where A†=(AHA)−1AH is the pseudo inverse of A.
By substituting (10) into (9), the problem is reduced
to one of the equivalent formulations, i.e.

min
θ
J1(θ), J1(θ) = tr[P⊥

A(θ)R̂y] (11a)

max
θ
J2(θ), J2(θ) = tr[PA(θ)R̂y] (11b)

where tr(·) is the trace operator and the estimated sam-
ple correlation matrix of y(t) is defined by

R̂y =
1
N

N∑
t=1

y(t)yH(t) (12)

N being the number of snapshots of the observation
vector y(t). In (11a) and (11b), PA(θ) and P⊥

A(θ) are
the projection matrices for projecting onto the column
space ofA and onto its orthogonal complement, respec-
tively, and are given by

PA(θ) = A(AHA)−1AH (13a)

P⊥
A(θ) = I−A(AHA)−1AH (13b)

Then R⊥(A), the orthogonal complement to the space
spanned by the columns of A, is spanned by the
columns of B since the b(z) be its generating polyno-
mials. Therefore, P⊥

A(θ) can be written as

P⊥
A(θ) = PB = B(BHB)−1BH (14)

Consequently, the cost function (11a) can be replaced
by min J(b) in terms of coefficient vector b and can now
be rewritten as

J(b) = tr(PBR̂y)

= tr
{
B(BHB)−1BHR̂y

}

= tr

{
B(BHB)−1BH 1

N

N∑
t=1

y(t)yH(t)
}

(15)

Moreover, using the commutative property of the con-
volution operation, i.e.,

BHy(t) = Y(t)b (16)

where the observation “data matrix” Y(t) is defined as

Y(t) =



yp+1(t) yp(t) · · · y1(t)
yp+2(t) yp+1(t) · · · y2(t)

...
...

. . .
...

yM (t) yM−1(t) · · · yM−P (t)


 (17)

using the result of (16), we obtain

N · J(b) = bH

{ N∑
t=1

YH(t)(BHB)−1Y(t)
}
b (18)

Since the polynomial b(z) in (8) has all of its zeros on
the unit circle, the coefficients of vector b satisfy the
conjugate symmetry constraint:

bk = b∗P−k for k = 0, 1, ..., P (19)

where (·)∗ denotes the complex conjugate. How-
ever, the complex constraint can be eliminated by
reparameterizing (8) by means of a real-valued vec-
tor β ∈ R(P+1)×1, which satisfies b=Wβ with W ∈
C(P+1)×(P+1) denoting a matrix made from 0,1,±j.
Hence, (18) can be rewritten as

N · J(b)=βHWH

{ N∑
t=1

YH(t)(BHB)−1Y(t)
}
Wβ (20)

To simplify (20), let

D =WH

{ N∑
t=1

YH(t)(BHB)−1Y(t)
}
W (21)

As indicated in [10], the quadratic form of Im{D} is
zero (being a Skew-symmetric matrix), for P (the total
number of jammer and the desired target) to be odd,
we have

J(b) = βHRe{D}β (22)

In fact, in Appendix A, we have shown for P to be
odd or even, (22) always holds. To avoid the trivial all-
zero solution (β=0), typically, there are many nontriv-
ial constraint set was chosen imposing linear (β0=1) or
quadratic (‖β‖=1) constraints. For linear constraint,
an alternative approach derived in Appendix B can be
easily used to estimate b denoted as b̂, which is much
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easy compared with the one discussed in [9]. However,
the linear constraint in the beamforming and direction-
of-arrival (DOA) estimation problems will yield conju-
gate symmetric polynomials b(z) with Re{b0}=0 be-
cause of the steering vector is constructed by sinu-
soids exponential in directions. Similar problems oc-
cur if Im{b0}=1 is chosen. Therefore, some different
approach, with the quadratic constraint (‖β‖=1), can
also be used to achieve better numerical results. More-
over, (22) can be specified to be equal to the Rayleigh
quotient of the vector β since the condition ‖β‖=1 is
utilized. And, the solution of optimization problem,
as stated herein, is through the so-called eigenvalue-
eigenvector methods, which can be used to separate the
signal subspace from the noise subspace. Consequently,
by the quadratic constraint approach, it results in an
eigenvalue-eigenvector problem; that is, β is obtained
by minimax theorem from the eigenvector correspond-
ing to the minimum eigenvalue of matrix Re{D}. In
what follows, the constrained nonlinear minimization
problem implemented by the IQML algorithm with the
quadratic (norm) constraint is addressed. It requires
the solution of the minimization problem at each step,
and generally converges in a small number of steps. Fol-
low the similar approach as [9], [10], the procedure of
IQML beamforming algorithm with norm constraint is
summarized:

(a) Initialization: k=0 and b0=1
(b) Compute

D(k)
Y =WH

{ N∑
t=1

YH(t)(BH
(k)B(k))−1Y(t)

}
W

(c) Solve the nonlinear minimization problem with
quadratic constraint set

β̂(k+1) = minβH
(k)Re{D(k)

Y }β(k)

(d) Set k=k+1, check for convergence ‖β̂(k+1)-β̂(k)‖<ε
If yes, go to (e)
otherwise, go to (b)

(e) Using the relationship b=Wβ to find the optimal
weights in terms of the matrixU of the beamformer

As shown in step (a) of the summary of the pro-
posed IQML algorithm, the initial weight b0 is set to
unity as the linear constraint approach, and bi=0, for
i = 1, 2, ..., P , are chosen according to the suggestion
given in [9]. Moreover, the small positive value ε in
step (d) of the proposed scheme is chosen to be in the
range of 10−2–10−3 as suggested in [13]. Of course,
the larger value of ε will lead to shorten the conver-
gence time. However, it might result in having per-
turbation in the steady-state environment. Based on
our experiences, it only requires five to ten iterations
for the proposed scheme to converge. It is of interest

Table 1 The computational complexity in each step for
executing the derivative IQML beamforming procedure.

Step Computational complexity
(b) O[(P + 1)(5P + 6)(M − P )N/3]
(c) O[(P + 1)2]
(e) O[M3q]: multiplications and additions

O[Mq]: square root and devision operations

to discuss the calculation of computation complexity of
each step. In general, the parameters; number of snap-
shots, sensors and desired signal plus jammers, should
follow the condition, e.g., N�M�P . Following the
procedure described in [13], the computational com-
plexity associated with the calculation of matrix D in
step (b) will be O[(P+1)(5P+6)(M−P )N/3] flops per
iteration, while the execution of eigen-decomposition
in step (c) needs O[(P +1)2] flops. Moreover, as de-
scribed in [5], the calculation for finding the optimal
weights of the derivative IQML beamformer in step
(e) requires O[M3q] multiplications and additions, and
O[Mq] square root and division operations. For conve-
nience, the overall computational complexities in each
step are listed in Table 1, as reference.

4. Computer Simulation Results

To demonstrate the merits of our method, computer
simulation for the beamforming problem with the wide-
band and coherent jammers is carried out, where the
directional pattern and output signal to interference
and noise ratio (SINR) with different order of deriva-
tive constraints are investigated. Also, for evaluating
the effect of signal cancellation, the output power with
different schemes is examined. In our simulation, the
number of sensor is chosen to be 16 (M=16) and the
desired signal is assumed to impinge from the normal
direction to the array. To compare the performance of
the IQML algorithm with different constraint sets, the
output SINR is used and defined by

SINR(t) =
Ps|wH(t)a(θ0)|2
wH(t)Rin(t)w(t)

(23)

Where Ps is the averaged power of desired signal,
a(θ0) is the steering vector toward the look direc-
tion, and Rin(t) is the covariance matrix of jammers
and noise. Also, the optimal SINR is denoted as
SINRopt(t)=psaH(θ0)R−1

in (t)a(θ0).

4.1 Wideband Jammer

First, we would like to investigate the capability of
wideband jammer suppression. In this case, the signal-
to-noise ratio (SNR) and jammer-to-noise ratio (JNR)
are setting to be 0 dB and 30 dB, respectively. In order
to illustrate the merits of the proposed scheme, several
scenarios are chosen and described as follows:
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Fig. 1 The directional pattern of narrowband beamformer
with different order derivative constraints.

Fig. 2 Performance of output SINR for wideband jammer in
scenario (a).

(a) Two wideband jammers are at 40◦ and 60◦, with
a bandwidth (BW) of 5% of the carrier frequency.

(b) Parameters are the same as (a) except 20% BW.
(c) Single wideband jammer at with 5% BW.

Figure 1 illustrates the results of directional patterns of
narrowband beamformer with different order of deriva-
tive constraints for scenario (a). As observed from
Fig. 1, we learn that the increase of the order of deriva-
tive constraint, the nulls in the direction of undesired
jammers become more deep and flat, and provide the
robustness to combat the wideband jammer efficiently.
Next, we would like to compare the output SINR of
the IQML algorithm with norm constraint and linear
constraint. As shown in Fig. 2 and Fig. 3, we found
that the value of output SINR using the IQML algo-
rithm with norm constraints are performed much bet-
ter than the one with linear constraint for the same or-
der of derivative constraints, according to the scenarios
(a) and (b). The use of quadratic constraint, (‖β|=1),

Fig. 3 Performance of output SINR for wideband jammer in
scenario (b).

Fig. 4 Performance of output SINR for wideband jammer in
scenario (c).

did have higher output SINR value and better numer-
ical property than the one with the linear constraint
(β0=1). Moreover, as shown in Fig. 4, while the an-
gle between jammer and desired signal becomes closer,
the linear constraint may perform worst, in terms of
output SINR, due to the fact that the IQML algorithm
with linear constraint is an inconsistent estimator. Sim-
ilar phenomena are also observed in other direction.
However, in all cases the proposed quadratic constraint
method is performed quiet well and approaches to the
optimal solution.

It is noted that, theoretically, the selection of op-
timum order q is mainly dependent on the selection of
the parameters, such as the closeness, in terms of ar-
rival angles between the desired target and jammers,
number of snapshot (N=50 in our simulation), and the
number of jammers, especially the closeness between
the desired target and jammers. In fact, the closer the
arrival angles, the smaller order of q has to be selected
to avoid the cancellation of desired target. This is ev-
ident from Fig. 4, with scenario (c), in which the best
selection of order becomes q=2. Next, although, the
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proposed estimator with norm constraint is a consistent
estimator, it gives asymptotically unbiased estimates
[9]. The parameter estimation obtained by the pro-
cedure of IQML, is inherently an iterative algorithm,
and could be biased. This is because that the sam-
ple correlation matrix (12) is perturbed by the additive
noise in subsequent iterations. In our simulation re-
sults the case with N=50 and q=4 could obtain the
best results for using the parameters given in scenar-
ios (a) and (b), where the jammers were not as close
as that of scenario (c). However, due to the fact that
the procedure of IQML, is inherently an iterative al-
gorithm, the results depicted in Fig. 2 and Fig. 3 are
with 2 dB biased compared to the optimum solution,
in terms of output SINR. But in Fig. 4, with scenario
(c), for q=4, the signal cancellation may occur due to
relatively high derivative constraint. This means that,
in Fig. 4, since the desired target and jammer are too
close with each other, with q=4 the result is worst com-
pared with that using q=0 and 2 and, indeed, q=2 has
the best result. For further discussion, we increased
the number of snapshots from 50 to 100, for Fig. 2 and
Fig. 3, with q=4 and the performance improvement in
terms of output SINR is increased around 0.2 to 0.3 dB.
It verifies that by increasing the number of snapshots
the performance could be further improved, with prop-
erly selection of order q.

Moreover, we would like to address the reason why
the tendencies of output SINR with linear constraint for
the order q in Figs. 2 to 4 are not the same. That is,
the value for q=0 is better than q=2 in Fig. 2, while in
Fig. 3, the result with q=2 is better than that with q=0.
As indicated in [13] the IQML algorithm with linear
constraint has been shown to be inconsistent estima-
tor and possible locally converged near the stationary
point. Also, as discussed in [10], the inconsistency oc-
curred since it converged to a local minimum for some
frequencies in frequency estimation problem. Due to
the reason described above, in our cases, this discrep-
ancy also appeared in the simulation results for the
case of q=2, when linear constraint was applied to the
derivative beamforming problem. This means that the
output SINR with linear constraint does not have con-
sistent results for different value of order q.

Finally, to discuss the convergence rate, the learn-
ing curves of scenario (a) with both the norm constraint
and linear constraint, for different order of derivative
constraint are evaluated in Fig. 5. As observed from
Fig. 5, we learn that the norm constraint has the faster
convergence rate, with corresponding value of q, than
the linear constraint. It could converge between five to
ten iterations. Besides, for higher order q (q=4) the
convergence rate is slightly slower than the one with
lower order q (q=2). This is due to the fact that the
dimension of matrix C is increased when the order of q
becomes larger. However, in all cases the use of norm
constraint has faster convergence rate compared with

Fig. 5 Learning curve of convergence rate with different con-
straint sets and orders (q) for wideband jammer in scenario (a).

the one with linear constraint. Consequently, this veri-
fied the significant improvement by using the IQML al-
gorithm with norm constraint via different performance
index, viz., output SINR value and learning curve of
convergence rate, for wideband jammer suppression.

4.2 Coherent Jammer

In [5], the advantage of utilizing the derivative con-
straint using IQML algorithm with linear constraint for
coherent jammer, in terms of SINR, was discussed. In
this simulation, we would like to further investigate the
merit of the derivative constraint approach derived in
this paper for the CDMA system. To demonstrate the
effect of desired signal cancellation due to the coherent
jammer in the CDMA system, here, the coherent jam-
mers, due to other users, occur under the conditions
of timing asynchronous in the uplink and multipath
Rayleigh fading channels. Moreover, the value of corre-
lation coefficient between coherent jammer and desired
user can be controlled by adjusting the value of α as
suggested in [11]:

âi =
{
ai, for 0 ≤ i < α ·N
−ai, for α ·N ≤ i < N − 1 (24)

where ai is the spreading code sequence of the desired
user, and âi is the spreading code sequence of coher-
ent jammer which can be estimated by (24). Besides,
the processing gain is denoted as N , and the param-
eter as described earlier α (0 ≤ α ≤ 1/2) is used to
control the value of correlation coefficient between co-
herent jammer and desired user (while α=1/2, two sig-
nals are complete orthogonal; otherwise, e.g., α=0, two
signals are fully correlated). And, the correlation (ρ)
with the parameter α can be easily expressed as

ρ = 2
(

1
2
− α

)
(25)

Here, two scenarios are simulated and described as:
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Fig. 6 The directional pattern of narrowband beamformer
with and without derivative constraint corrupted by coherent
jammer in scenario (a).

Fig. 7 The output power of narrowband beamformer with and
without derivative constraint corrupted by coherent jammer with
different correlation in scenario (b) and CDMA system.

(a) Single coherent jammer at 40◦ with fully cor-
related (ρ=1) corresponding to desired signal
(SNR=30 dB, JNR=30 dB).

(b) Parameters are the same as (a) except different
correlation and SNR=10 dB.

From Fig. 6, we observed that the directional pattern of
narrowband beamformer, without using derivative con-
straint, would corrupt by the coherent jammer as can
be seen from the upper part of Fig. 6. We also found
that the coherent jammer located at would result in
having main-lobe signal cancellation, and is referred to
as the desired signal cancellation. To be more specific,
in Fig. 7 with different correlation values, 0.5, 0.7 and
0.9, the output power via the number of iteration is ex-
amined. We can clearly see that the output power of
narrowband beamformer with conventional (direction)
constraint is degraded more seriously as the correla-
tion values become larger. In fact, the desired signal
may be cancelled completely when the coherent jam-

Table 2 Nulling capability in terms of dB in IQML algorithm
with different constraint sets.

q = 0 q = 2 q = 4
Linear constraint β0=1 −68.86dB −69.04 dB −73.50dB
Quadratic constraint ‖β‖=1 −82.24dB −86.93 dB −91.48dB

mer becomes fully correlated (ρ=1). That is, the can-
cellation level depends highly on the degree of corre-
lation. Higher correlation will cause more significant
signal cancellation. Therefore, it will reduce the perfor-
mance of desired user’s detection in the CDMA system.
However, it could be avoided by incorporating deriva-
tive constraint approach as shown in the lower part of
Fig. 6. This is because that in the conventional mini-
mum variance distortionless response (MVDR) beam-
former, only the constraint of (4b) associated with de-
sired signal’s direction in utilized. With coherent jam-
mer the signal cancellation might occur if there has not
other existing algorithm being used with the MVDR
beamformer. But, with the approach such as the one
discussed in this paper, because the noise subspace has
been estimated with the IQML algorithm associated
with derivative constraints, as expressed in (4c) and
(4d), in the jammer directions. Therefore, the coher-
ent jammer could be suppressed effectively, such that
the correlation value would not have any effect when
the derivative constraints were employed. Moreover,
it should be emphasized that the nulling capability of
the IQML beamformer algorithm with quadratic con-
straint has 13–18 dB improvement than the one with
linear constraint [5]. For convenience, the nulling capa-
bilities of narrowband beamformer with different con-
straint sets and constraint orders are listed in Table 2,
as reference.

5. Conclusions

In this paper, a narrowband beamformer incorporated
with derivative constraint was proposed to reject the
wideband and coherent jammers. Here, a new IQML
algorithm with norm constraint set was devised and
utilized to estimate the unknown jammer’s direction.
From simulation results, we have shown that the IQML
algorithm with linear constraint was an inconsistent es-
timator in the beamforming problem to cause signifi-
cant performance degradation in terms of output SINR
value. And, the proposed method provides the better
nulling capability while corrupting by the coherent jam-
mer in the CDMA system. Consequently, we concluded
that the IQML algorithm with quadratic constraint did
perform well, in terms of directional pattern, output
SINR and nulling capability in the narrowband deriva-
tive beamformer, for wideband and coherent jammers
suppression and greatly improve the performance in the
CDMA system for desired user’s detection.
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Appendix A

In this appendix, we would like to generalize the re-
sult suggested in [10] and verify that quadratic form
of Im{D} is zero (being Skew-symmetric matrix, i.e.,
[Im{D}]T =−Im{D}), not just for P to be odd, it also
holds for P to be even. To do so, we first have to show
the condition of Im{WHW}=0. First, for P being
odd and let P=2q+1, q ∈ R, then, the (P+1)×(P+1)
matrix W can be denoted as

W(P+1)=




1 j 0 0 · · · 0 0
0 0 1 j · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 j
0 0 0 0 · · · 1 −j
...

...
...

...
...

...
...

0 0 1 −j · · · 0 0
1 −j 0 0 · · · 0 0




(q+1)×(2q+2)

(q+1)×(2q+2)

(A· 1)

After some simplification and manipulation, we have

WH
(P+1)W(P+1)=




2 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · 2


=2I2q+2=2IP+1 (A· 2)

Thus, for any odd value of P , we haveWH
(P+1)W(P+1)

= 2IP+1, and hence, Im{WHW}=0. Furthermore,
since the conjugate symmetry constraint in terms of
b can be replaced by the real-value vector β, which
satisfies b=Wβ, the vector β can be expressed as

β =
[

Re(b0) Im(b0) · · · Re(bP−1
2

) Im(bP−1
2

)
]T

(A· 3)

Next, if P is even and let P=2q, then, the matrix W
can be rewritten as

W(P+1) =




1 j 0 0 · · · 0
0 0 1 j · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
...

...
...

...
...

...
0 0 1 −j · · · 0
1 −j 0 0 · · · 0




q×(2q+1)
1×(2q+1)

q×(2q+1)

(A· 4)

As the same procedure as above, we can get

WH
(P+1)W(P+1)=




2 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · 1


=J2q+1=JP+1 (A· 5)

where J = diag(2, 2, ..., 1) is defined as a diagonal ma-
trix which each element is 2 except the last element is 1.
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Thus, we obtain WH
(P+1)W(P+1) = JP+1 for any even

P . Therefore, the condition of Im{WHW}=0 also be
satisfied. Besides, the vector β can also be expressed
as

β =
[

Re(b0)Im(b0) · · · Re(bP−1
2

)Im(bP−1
2

)bP
2

]T

(A· 6)

Consequently, for any P , we always have Im{WHW}
= 0.

Appendix B

To investigate the linear constraint (β0=1) of the IQML
algorithm, in this appendix, a linear set of simultaneous
equations need to be solved as described below. First,
we recall from (22) as

J(b) = βHRe{D}β (A· 7)

since Re{b0}=1 and the definition of β in Appendix A,
(A · 7) can be rewritten as

J(b) =
[

1 βH
r

]
·
[
d0 dH

1

d1 Dr

]
·
[

1
βr

]

=
[
d0 + βH

r d1 d
H
1 + βH

r Dr

]
·
[

1
βr

]

= d0 + βH
r d1 + dH

1 βr + βH
r Drβr (A· 8)

with

βr =
[
Im(b0) Re(b1) Im(b1) · · · Re(bP−1

2
) Im(bP−1

2
)
]T

for P is odd. (A· 9a)

βr = [Im(b0) Re(b1) Im(b1)

· · · Re(bP−1
2

) Im(bP−1
2

) bP
2

]T

for P is even. (A· 9b)

where βr is the rest of the unknown terms in β. Pa-
rameter d0 is a scalar, d1 is a P × 1 vector and Dr is a
P × P matrix. In order to obtain the optimal solution
of b, we take the derivation of J(b) with respect to βr

and setting it to zero.

J(b)
∂βr

= 2d1 + 2Drβr = 0 (A· 10)

Hence, βr can be obtained as follows:

βr = −D−1
r d1 (A· 11)

Consequently, we have the estimation of b via the
IQML algorithm with linear constraint under the fol-
lowing relationship:

b̂ =Wβ =W
[

1
βr

]
=W

[
1

−D−1
r d1

]
(A· 12)
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